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ABSTRACT
We have investigated the time variations in the light curves from a sample of long and
short Fermi/GBM gamma-ray bursts (GRBs) using an impartial wavelet analysis. The results
indicate that in the source frame, the variability time-scales for long bursts differ from that
for short bursts, variabilities of the order of a few milliseconds are not uncommon and an
intriguing relationship exists between the minimum variability time and the burst duration.
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1 IN T RO D U C T I O N

The prompt emission from gamma-ray bursts (GRBs) shows com-
plex time profiles that have eluded a generally accepted explanation.
Fenimore & Ramirez-Ruiz (2000) reported a correlation between
variability of GRBs and the peak isotropic luminosity. The existence
of the variability–luminosity correlation suggests that the prompt
emission light curves have embedded temporal information related
to the microphysics of GRBs. Several models have been proposed
to explain the observed temporal variability of GRB light curves.
Leading models such as the internal shock model (Kobayashi,
Piran & Sari 1997) and the photospheric model (Ryde 2004) link
the rapid variability directly to the activity of the central engine.
Others invoke relativistic outflow mechanisms to suggest that local
turbulence amplified through Lorentz boosting leads to causally dis-
connected regions which in turn act as independent centres for the
observed prompt emission. Within more recent models, Morsony,
Lazzati & Begelman (2010) and Zhang & Yan (2011) argue that the
temporal variability may show two different scales depending on
the physical mechanisms generating the prompt emission.

In order to further our understanding of the prompt emission
phase of GRBs and to explicitly test some of the key ingredients in
the various models, it is clearly important to extract the variability
for both short and long GRBs in a robust and unbiased manner.
It is also clear that the chosen methodology should not only be
mathematically rigorous but also be sufficiently flexible to apply to
transient phenomena with multiple time-scales and a wide dynamic
range. A wide dynamic range is naturally provided by the bimodal
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separation of GRB duration occurring at T90 = 2 s as observed by
Kouveliotou et al. (1993) to distinguish between long- and short-
duration GRBs.

In this paper, we extract variability time-scales for GRBs using
a method based on wavelets. The technique for such a temporal
analysis is universal and has the advantage over Fourier analysis
that transients and frequency correlations can be more easily picked
out in the data. Results presented herein were compared with Bhat
et al. (2012), who gave pulse parameters for approximately 400
pulses obtained from 34 GRBs. It was shown by MacLachlan et al.
(2012) that the minimum variability time-scale tracks the rise times
of pulses very well for over three orders of magnitude in time-scale.
The relation of minimum variability time-scales to pulse parameters
has been extended to four orders of magnitude by Sonbas et al.
(2012), who applied the present technique to analyse X-ray flares.

The time-scales being investigated here have power densities
very near to that of the noise in the data which makes extracting
these time-scales non-trivial. A somewhat older but still interesting
discussion of extracting signal in a noisy environment can be found
in Scargle (1982) and a more recent discussion found in Kostelich
& Schreiber (1993). The technique we offer is not necessarily new
but is different from previous published wavelet analyses (Fritz &
Bruch 1998; Walker, Schaefer & Fenimore 2000; Tamburini, De
Martino & Bianchini 2009; Anzolin et al. 2010)1 in that we apply
a number of modifications suggested by various authors (Coifman
& Donoho 1995; Strang & Nguyen 1997; Percival & Walden 2000;
Addison 2002) as explained further in Section 4.

1 Note that Fritz & Bruch (1998) analysed optical data and Tamburini et al.
(2009) and Anzolin et al. (2010) X-ray data from cataclysmic variables.
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The layout of the paper is as follows: the source of the data is
described in Section 2; the main aspects of the wavelet methodology
are outlined in Section 3; in Section 4, we provide the details of the
data analysis; in Section 5, we present and discuss our main findings;
finally, in Section 6, we summarize our conclusions.

2 DATA

The Gamma-Ray Burst Monitor (GBM) on board Fermi observes
GRBs in the energy range 8 keV to 40 MeV. The GBM is composed
of 12 thallium-activated sodium iodide (NaI) scintillation detectors
(12.7 cm in diameter by 1.27 cm thick) that are sensitive to energies
in the range of 8 keV to 1 MeV, and two bismuth germanate (BGO)
scintillation detectors (12.7 cm diameter by 12.7 cm thick) with
energy coverage between 200 keV and 40 MeV. The GBM detectors
are arranged in such a way that they provide a significant view of
the sky (Meegan et al. 2009).

In this work, we have extracted light curves for the GBM NaI
detectors over the entire energy range (8 keV to 1 MeV, also includ-
ing the overflow beyond 1 MeV). Typically, the brightest three NaI
detectors were chosen for the extraction. Light curves for both long
and short GRBs were extracted at a time binning of 200 µs. The
long GRBs were extracted over a duration starting from 20 s before
the trigger and up to about 50 s after the T90 for the burst with-
out any background subtraction. For short GRBs, durations were
chosen to be 20 s before the trigger and 10 s after the T90. The
T90 durations were obtained from the Fermi GBM-Burst Catalogue
(Paciesas et al. 2012).

3 M E T H O D O L O G Y

We report on our model-independent statistical investigation of the
variability of Fermi/GBM long and short GRBs. We extract this
information by using a fast wavelet transformation to encode GRB
light curves into a wavelet representation and then compute a statis-
tical measure of the variance of wavelet coefficients over multiple
time-scales.

3.1 Minimum variability time-scales

It is often the case when multiple processes are present that one
process will dominate the others at certain time-scales but those
same processes may exchange dominance at other time-scales. A
wavelet technique is useful in these situations because the variances
of wavelet coefficients are sensitive to whichever processes domi-
nate the light curve at a given time-scale. Moreover, the technique
can be used to classify those dominant processes as well as provide
a means to determine the characteristic time-scale, τβ , for which
the processes exchange dominance. Determination of τβ helps in
the development of theoretical models and the understanding of ob-
servational data. Indeed, if there is a transition from a time-scaling
region to that of white noise, then there is a smallest variability time
for the physical processes present.

3.2 Wavelet transforms

Wavelet transformations have been shown to be a natural tool for
the multiresolution analysis of non-stationary time series (Flandrin
1989, 1992; Mallat 1989). Wavelet analysis is similar to Fourier
analysis in many respects but differs in that wavelet basis functions
are well localized, i.e. have compact support, while Fourier basis

functions are global. Compact support means that outside some fi-
nite range the amplitude of wavelet basis functions goes to zero or is
otherwise negligibly small (Percival & Walden 2000). In principle,
a wavelet expansion forms a faithful representation of the original
data, in that the basis set is orthonormal and complete.

3.2.1 Discrete dyadic wavelet transforms

Given the discrete nature of the data, we employ a discrete wavelet
analysis. The rescaled translated nature of the wavelet basis func-
tions makes the wavelet transform well localized in both frequency
and time, which results in an insensitivity to background photon
counts expressed by polynomial fits. The level of insensitivity, for-
mally known as the vanishing moment condition, can be adjusted
by the choice of the wavelet basis function. By construction, the
discrete wavelet transform is a multiresolution operation (Mallat
1989). Such wavelets, denoted as ψ j, k(t), form a dyadic basis set,
i.e. wavelets in the set have variable widths and variable central
time positions.

The wavelet analysis employed in this study, as with the fast
Fourier transform, begins with a light curve with N elements,

Xi = {X0 . . . XN−1}, (1)

where N is an integer power of 2. The light curve is convolved with
a scaling function, φj, k(ti), and wavelet function, ψ j, k(ti), which are
rescaled and translated versions of the original scaling and wavelet
functions φ(ti) = φ0, 0 and ψ(ti) = ψ0, 0. Translation is indexed by k
and rescaling is indexed by j. The rescaling and translation relation
is given by

ψj,k(t) = 2−j/2ψ(2−j t − k). (2)

The precise forms of the scaling and wavelet functions are not
unique. The choices are made according to the features one wishes
to exploit (Percival & Walden 2000; Addison 2002). The scaling
function acts as a smoothing filter for the input time series and the
wavelet function probes the time series for detail information at
some time-scale, �t, which is twice that of the finest binning of the
data, Tbin. In the analysis, the time-scale is doubled

�t → 2�t

and the transform is repeated until

�t = NTbin.

In this analysis, we choose the Haar (Addison 2002) scaling/wavelet
basis because it has the smallest possible support, has one vanishing
moment and is equivalent to the Allan variance (Howe & Percival
1995), allowing for a straightforward interpretation.

3.2.2 The Haar wavelet basis

Convolving the light curve, X, with the scaling functions yields
approximation coefficients,

aj,k = 〈φj,k, X〉. (3)

Interrogating X with the wavelet basis functions yields scale- and
position-dependent detail coefficients,

dj,k = 〈ψj,k, X〉. (4)

It is interesting to point out that for the trivial N = 2 case, the Haar
wavelet transform and the Fourier transform are identical.
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3.3 Log-scale diagrams and scaling

Log-scale diagrams are useful for identifying scaling and noise
regions. Construction of a log-scale diagram for each GRB proceeds
from the variance of detail coefficients (Flandrin 1992),

βj = 1

nj

nj −1∑
k=0

|dj,k|2, (5)

where the nj are the number of detail coefficients at a particular
scale, j. A plot of log2 variances versus scale, j, takes the general
form

log2 βj = αj + constant, (6)

and is known as a log-scale diagram. A linear regression is made
of each log-scale diagram and the slope parameter, α (depicting a
measure of scaling), is estimated. White-noise processes appear in
log-scale diagrams as flat regions while non-stationary processes
appear as sloped regions with the following condition on the slope
parameter, α > 1 (Flandrin 1989; Percival & Walden 2000; Abry
et al. 2003).

4 DATA A NA LY SIS

4.1 Background subtraction

We now present a method for removing photometric background
due to noise not intrinsic to the GRB so that physical variability
arising from the GRB remains for further analysis. Background sub-
traction for a statistical analysis of variability via wavelet transforms
should proceed in the space variances as opposed to a traditional flat
or linear subtraction of counts. This owes to the fact that Haar detail
coefficients are insensitive to polynomial trends in the signal up to
first order. Subtraction of a flat or linear background from a light
curve is an operation under which the wavelet transform is invariant
(as are Fourier transforms) apart from the mean signal coefficient.

The GRB light curves show power at various variability time-
scales. Most often, there is a region of the log-scale diagram (log-
power verses log-variability time) with a single slope, indicating
scaling in the power over those variability times, and a flat region at
the shortest variability times, indicating the presence of white noise.
Some of this white noise may be intrinsic to the GRB. Some may be
attributed to instrumental noise and to background emissions from
sources not including the GRB in question. We therefore express
the variability of the burst, βburst

j , at time-scales j as comprising
of individual variances: a scaling component, βscaling; an intrinsic
noise component, βnoise, and a background component, βbackground.
The variability of the burst can then be described as a linear combi-
nation of the component variances so long as the components have
vanishing covariances. In this event we write

βburst
j = β

scaling
j + βnoise

j + β
background
j . (7)

The minimum variability time-scale, τβ , is identified from a log-
scale diagram by the octave, jintersection, of the intersection of the
flat intrinsic noise domain, βnoise

j , with the sloped scaling domain,

β
scaling
j ,

τβ ≡ Tbin × 2jintersection . (8)

In practice, the octave at which the intersection occurs is determined
by equating the polynomial fits to the flat intrinsic noise domain and
the sloped scaling domain and solving for jintersection. The uncertainty
in τβ is determined by propagating the uncertainty in the parameters

Figure 1. GBM GRB080925775. Preburst portion of the light curve, used
for background removal, is shown in grey. The burst portion, from which a
time-scale is extracted, is shown in black.

from the fits to the β j which in turn follow from a bootstrap proce-
dure described in Sections 4.1.2 and 4.1.3. It is at this time-scale, τβ ,
that a structured physical process appears to give way to one that is
stochastic and unstructured. Clearly one seeks to remove β

background
j

from equation (7) to arrive at the cleanest possible signal,

βburst
j → βclean

j ≡ βburst
j − β

background
j = β

scaling
j + βnoise

j . (9)

In order to estimate the variance of the background during the
burst, we will assume that the variance obtained from a preburst
portion of the light curve can serve as an acceptable surrogate for
the background variance. That is,

β
preburst
j ≡ β

background
j , (10)

and then the background is removed from the signal according to
the relation

log2(βclean
j ) = log2(βburst

j − β
preburst
j ). (11)

A simple algebraic manipulation of equation (11) gives a form,

log2(βclean
j ) = log2(βburst

j ) + log2

(
1 − β

preburst
j

βburst
j

)
. (12)

For long GRBs, the preburst is defined relative to a zero-second
trigger time as T-20 s to T-5 s and for short GRBs the preburst is
defined to be from T-15 s to T-1 s. Here T is the trigger time of the
burst (see Fig. 1).

4.1.1 Statistical uncertainties

We have considered the statistical uncertainties in the light curve by
a typical bootstrap approach in which the square root of the number
of counts per bin is used to generate an additive Poisson noise. A
new Poisson noise is considered for each iteration through the boot-
strap process. More significant contributions to the uncertainties are
discussed in Sections 4.1.2 and 4.1.3.

4.1.2 Circular permutation

Spurious artefacts due to incidental symmetries resulting from acci-
dental misalignment (Coifman & Donoho 1995; Percival & Walden
2000) of light curves with wavelet basis functions are minimized by
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circularly shifting the light curve against the basis functions. Cir-
cular shifting is a form of translation invariant de-noising (Coifman
& Donoho 1995). It is possible that a shift will introduce addi-
tional artefacts by moving a different symmetry into a susceptible
location. Thus, our approach is to circulate the signal through all
possible values, or at least a representative sampling, and then take
an average over the cases which do not show spurious correlations.

4.1.3 Reverse-tail concatenation

Both discrete Fourier and discrete wavelet transformations imply
an overall periodicity equal to the full time range of the input data.
This can be interpreted to mean that for a series of N elements,
{X0, X1. . . XN − 1}, then X0 is made a surrogate for XN, X1 is made a
surrogate for XN+1, and so forth. This assumption may lead to trouble
if X0 is much different from XN−1. In this case, artificially large
variances may be computed. Reverse-tail concatenation minimizes
this problem by making a copy of the series which is then reversed
and concatenated on to the end of the original series resulting in
a new series with a length twice that of the original. Instead of
matching boundary conditions like

X0, X1, . . . , XN−1, X0, (13)

we match boundaries as

X0, X1, . . . XN−1, XN−1, . . . , X1, X0. (14)

Note that the series length has thus artificially been increased to 2N
by reversing and doubling of the original series. Consequently, the
wavelet variances at the largest scale in a log-scale diagram reflect
this redundancy. This is the reason why the wavelet variances at
the largest scale are excluded from least-squares fits of the scaling
region.

Another difficulty in wavelet expansions is that the initialization
procedure of the multiresolution algorithm may pollute the detail
coefficients at the finest scale (see Strang & Nguyen 1997; Abry
et al. 2003). For this reason, we follow the advice of Abry et al.
(2003) and discard the detail coefficients at the finest scale.

4.2 Simulation

The efficacy of this background subtraction method and the sensi-
tivity to signal to noise was tested using simulated data in the form
of fractional Brownian motion (fBm) time series that were first
discussed by Mandelbrot & Van Ness (1968). One advantage of
using fBms for simulation of time series data is that short duration,
statistically significant fluctuations which trigger the identification
of a minimum variability time-scale arise naturally as part of the
random process which produces them. Another is that fBms have a
scaling parameter, α, which is easily varied.

The outline of the simulation procedure begins with using the
numerical computing environment MATLAB to produce 1000 re-
alizations of fBms with scaling parameter α randomly chosen from
the range 1.0 ≤ α ≤ 2.0 by using a uniform random number gener-
ator. The fBms were then acted upon by a Poisson operator which
transformed each time series into a Poisson-distributed series but
left other properties of the fBm intact, e.g. α.

The fBms were then combined with a Poisson noise with variance,
λB. These Poisson noises were regarded as intrinsic to the GRB.
Another set of Poisson noises with variances, λI, were generated
and these noise signals were interpreted as external background
meant to be removed by the subtraction procedure.

Figure 2. In the left-hand panel are simulated light curves and noise pro-
cesses: an ideal fBm process (green) and a background Poisson noise (black).
The sum of the fBm and Poisson processes is shown in red and is labelled
observed. The observed light curve (red) is the sum of the fBm and Poisson
noise. The right-hand panel shows the results of the background subtraction
procedure. The red and black points show the log-scale diagrams correspond-
ing to the observed light curve and background, respectively. The green data
show the log-scale diagram for the ideal light curve and the blue data are
the log scale with background removed. The agreement between green and
blue data demonstrates the merit of the background removal procedure.

The idealized light curves were then combined with external
backgrounds resulting in pseudo-observed light curves shown in
red in the left-hand panel of Fig. 2. The pseudo-observed light
curves and the external background noises were transformed into
wavelet coefficients and wavelet variances were computed accord-
ing to equation (5). The variances of the pseudo-observed light
curve (labelled actual) and the background are plotted in the right-
hand panel of Fig. 2 in red and black, respectively. The background
was subtracted from the pseudo-observed light curve as detailed in
equation (12), and the resulting corrected variances are plotted in
blue in the right-hand panel of Fig. 2. The corrected variances are
to be compared to the variances of the ideal light curve which are
plotted in green.

4.2.1 Signal-to-noise sensitivity

We define a brightness parameter, ξ , such that

ξ ≡ 2δ/2, (15)

where

δ ≡ log2 λB − log2 λI . (16)

Ideally the octave, jintersection, which is related to the minimum vari-
ability time-scale, τβ , as defined in equation (8) is completely de-
termined by ξ , λI, α, and the standard deviation of the increments of
the fBm, σ . We fixed the values of λ, σ and varied α and ξ so that the
expected values of jintersection are 〈jintersection〉 = {6, 7}. The time se-
ries thus produced were then analysed as described in Section 4.1.
The results of the simulation are given in Fig. 3. The horizontal
red and blue lines show the expected jintersection for octaves 6 and
7, respectively, and are given as a guide. Brightness, ξ , increases
to the right. We show in grey the region along the ξ -axis, where
we find the GRBs analysed in this paper based on the background
noise level and the estimated noise level intrinsic to the GRB. We
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Figure 3. Results of signal-to-noise sensitivity test. We generated 1000
simulated light curves with expected jintersection equal to 6 and 7 for various
brightness. We show in grey the region along the ξ -axis, where we find the
GRBs analysed in this paper, 0.3 < ξ < 0.74. We note that in the region
covered by the GRBs presented herein, brightness does not affect jintersection

greatly.

have noted by our own experience that for ξ < 0.1, the technique
discussed in this paper performs poorly. However, in the range of
signal to noise sampled by the GRBs used here, 0.3 < ξ < 0.74,
the background subtraction technique does not suffer from a large
systematic response to variations in brightness, as can be seen in
Fig. 3.

4.2.2 Flux sensitivity

We also investigated the reliability of the analysis as a function of
flux by removing randomly selected counts from the original sim-
ulated signal component while leaving the background noise level
undisturbed. The analysis is then repeated for the newly dimmed
simulated light curves and comparison is made to the original un-
dimmed version. This brightness comparison is similar to the one
described in Norris et al. (1995) but with a different normalization.
In Norris et al. (1995) light curves were normalized by peak inten-
sities. In this study, the simulated light curves were normalized by
signal power at the time-scales specified by the dyadic partitioning
of the wavelet transform.

Dimming of the simulated light curves was done by removing 0–
10 per cent and reanalysing then repeating by removing 10–20 per
cent and so forth up to 70–80 per cent. We also considered the effect
of larger variations in count removal, i.e. removing 0–25 per cent,
25–50 per cent and 50–75 per cent. We find that a decrease in flux
has essentially the same effect on τβ as increasing the noise level.
However, the largest effect was by the wider bite of counts. For
example, one can expect more accurate results from this analysis
by removing 30–40 per cent of counts on a bin to bin basis than
by removing 25–50 per cent. We conclude that flux-related effects
are more serious when it varies widely throughout the duration of
the light curve. In all cases, we have studied removing 80 per cent
or more of the counts in the signal was a reliable way to make the
method fail. Fortunately, when the method fails in this way it does
so in an obvious way, i.e. the white-noise signal power coefficients
in the log-scale diagram become highly irregular. As discussed in
Section 4.3, we test for this effect in the GRB data by performing

Table 1. Short GRBs (observer frame).

GRB T90 (s) δT90 (s) τβ (s) δτ−
β (s) δτ+

β (s)

080723913 0.192 0.345 0.0307 0.0192 0.0510
081012045 1.216 1.748 0.0052 0.0024 0.0044
081102365 1.728 0.231 0.0258 0.0100 0.0165
081105614 1.280 1.368 0.0306 0.0147 0.0282
081107321 1.664 0.234 0.0504 0.0129 0.0173
081216531 0.768 0.429 0.0138 0.0037 0.0050
090108020 0.704 0.143 0.0241 0.0064 0.0088
090206620 0.320 0.143 0.0143 0.0063 0.0112
090227772 1.280 1.026 0.0053 0.0009 0.0011
090228204 0.448 0.143 0.0028 0.0005 0.0005
090308734 1.664 0.286 0.0120 0.0040 0.0059
090429753 0.640 0.466 0.0285 0.0115 0.0193
090510016 0.960 0.138 0.0049 0.0009 0.0011
100117879 0.256 0.834 0.0331 0.0122 0.0192

a chi-squared test on the white-noise signal power coefficients and
rejecting any GRB that fails.

In summary, 1000 simulated light curves were generated and
background noise was added. The light curves with background
noise were then denoised using the same algorithm applied to actual
GRB data in which preburst data were used as a surrogate for
background. The simulated background-subtracted variances were
then compared to the variances of the ideal light curves, i.e. light
curves without external background noise. Signal-to-noise effects
on the reliability of the method were also considered and found
either to be small compared to our quoted errors or large enough
that τβ could not be determined. In the case of the latter the GRB was
removed from the analysis. The results indicate that the background
subtraction method is robust and gives confidence that external
background noise can be subtracted from the GRB light curves
with the assumption that preburst data can serve as a surrogate for
background noise.

4.3 Selection criteria

We analysed 122 GRBs (61 long and 61 short) listed in the Fermi
GBM-Burst Catalogue (Paciesas et al. 2012) for the first two years
of the GBM mission. As discussed in Section 4.2, the signal-to-
background ratio is a factor to be considered in recovering the
intrinsic light curve (see equation 12). We required the following
condition on the ratio of variances,

β
preburst
j

βburst
j

< 0.75, (17)

for one or more octaves, j. In addition, we also required that the
first-order polynomial fits to the noise region and to the scaling
region each had a χ2/d.o.f. that was less than 2. This reduced the
sample to 14 short GRBs (Table 1) and 46 long GRBs (Table 2) for
a total of 60, and it is these GRBs which are used to create Figs 4, 5
and 8. For boosting into the source frame (Figs 6 and 7) a known z

is obviously required and this cut further reduced the data set to two
short GRBs and 16 long GRBs for a total of 18 GRBs considered
in the source frame (see Table 3).

5 R ESULTS AND DI SCUSSI ON

For a large sample of short- and long-GBM bursts, we have used a
technique based on wavelets to determine the minimum time-scale
(τβ ) at which scaling processes dominate random noise processes.
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Table 2. Long GRBs (observer frame).

GRB T90 (s) δT90 (s) τβ (s) δτ−
β (s) δτ+

β (s)

080723557 58.369 1.985 0.0440 0.0113 0.0151
080723985 42.817 0.659 0.1894 0.0557 0.0789
080724401 379.397 2.202 0.0741 0.0208 0.0290
080804972 24.704 1.460 0.4306 0.1336 0.1937
080806896 75.777 4.185 0.4189 0.1471 0.2268
080807993 19.072 0.181 0.0232 0.0096 0.0164
080810549 107.457 15.413 0.1353 0.0648 0.1243
080816503 64.769 1.810 0.1067 0.0428 0.0715
080817161 60.289 0.466 0.1919 0.0402 0.0509
080825593 20.992 0.231 0.0775 0.0138 0.0168
080906212 2.875 0.767 0.1011 0.0182 0.0222
080916009 62.977 0.810 0.2266 0.0630 0.0872
080925775 31.744 3.167 0.1748 0.0425 0.0562
081009140 41.345 0.264 0.1095 0.0170 0.0201
081101532 8.256 0.889 0.0948 0.0302 0.0444
081125496 9.280 0.607 0.2182 0.0504 0.0656
081129161 62.657 7.318 0.0912 0.0292 0.0429
081215784 5.568 0.143 0.0319 0.0043 0.0050
081221681 29.697 0.410 0.2701 0.0641 0.0841
081222204 18.880 2.318 0.1956 0.0533 0.0732
081224887 16.448 1.159 0.2055 0.0356 0.0431
090102122 26.624 0.810 0.0347 0.0111 0.0164
090131090 35.073 1.056 0.0733 0.0169 0.0220
090202347 12.608 0.345 0.1444 0.0575 0.0954
090323002 135.170 1.448 0.1598 0.0436 0.0599
090328401 61.697 1.810 0.0682 0.0139 0.0175
090411991 14.336 1.086 0.0673 0.0391 0.0935
090424592 14.144 0.264 0.0249 0.0031 0.0036
090425377 75.393 2.450 0.1346 0.0369 0.0508
090516137 118.018 4.028 0.4938 0.2063 0.3544
090516353 123.074 2.896 0.7992 0.5686 1.9711
090528516 79.041 1.088 0.1314 0.0320 0.0423
090618353 112.386 1.086 0.2631 0.0536 0.0673
090620400 13.568 0.724 0.1667 0.0422 0.0564
090626189 48.897 2.828 0.0498 0.0078 0.0093
090718762 23.744 0.802 0.1621 0.0482 0.0686
090809978 11.008 0.320 0.2436 0.0515 0.0652
090810659 123.458 1.747 0.7319 0.3027 0.5161
090829672 67.585 2.896 0.0678 0.0141 0.0177
090831317 39.424 0.572 0.0266 0.0103 0.0169
090902462 19.328 0.286 0.0223 0.0026 0.0029
090926181 13.760 0.286 0.0435 0.0061 0.0070
091003191 20.224 0.362 0.0300 0.0051 0.0062
091127976 8.701 0.571 0.0395 0.0059 0.0069
091208410 12.480 5.018 0.0621 0.0180 0.0254
100414097 26.497 2.073 0.0418 0.0074 0.0090

The τβ is the intersection of the scaling region (red-noise) of the
spectrum in the log-scale diagram with that of the flat portion repre-
senting the (white-noise) random noise component. This transition
time-scale is the shortest resolvable variability time for physical
processes intrinsic to the GRB. Histograms of the extracted τβ val-
ues for long and short GRBs are shown in Fig. 4. We make two
observations regarding these histograms: (1) there is a clear tempo-
ral offset in the extracted mean τβ values for long and short GRBs.
We believe this is the first clear demonstration of this temporal dif-
ference. Walker et al. (2000), who studied the temporal variability
of long and short bursts using the BATSE data set, did not report a
systematic difference between the two types of bursts. (2) The two
histograms are quite broad and very similar in dispersion. While
the difference in the mean τβ is understandable (a point we dis-
cuss further elsewhere) the similarity of the dispersion is somewhat

Figure 4. A histogram of minimum variability time-scales, in the observer
frame, for long and short GRBs. It is clear that the distribution of long GRBs
is displaced from the distribution of short GRBs.

Figure 5. Minimum variability time-scale versus T90 in the observer frame.

Figure 6. Minimum variability time-scale versus T90 in the source frame.
The correction for time dilation shortens T90 and decreases the minimum
variability time-scale of each burst.

surprising since the progenitors and the environment for the
two types of bursts are presumably very different. The com-
parison is qualitative at best however because the τβ scale has
not been corrected for redshift (z), an effect that impacts the
long bursts more than the short bursts. In passing, we note that
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Figure 7. Minimum variability time-scale versus T90 with symbol size de-
termined by luminosity (larger symbols for higher luminosity). No obvious
relation between minimum variability time-scale and luminosity is apparent.
See Fig. 6 for error bars.

the dispersion of the τβ histogram (for long bursts) is in agreement
with the results of Ukwatta et al. (2011), who performed a power
density spectral analysis of a large sample of Swift long GRBs. In
that work, the authors extracted threshold frequencies and related
them to a variability scale.

In Fig. 5, we show a log–log plot of τβ versus T90 (the duration
of the bursts); long GRBs are indicated by circles, the short ones by
squares and both time-scales are with respect to the observer frame.
As in the histograms above, the fact that short GRBs, in general,
tend to have smaller τβ values compared to long GRBs is evident in
this figure. Also shown in the figure (as a dash line) is the trajectory
of τβ equal to T90. As we expect, no long GRBs exhibit a τβ longer
than T90 although interestingly a few short GRBs of extremely short

duration appear to be approaching the limit of equality. In addition
to establishing a characteristic time-scale for short and long bursts,
this figure also hints at a positive correlation between this time and
the duration of bursts. We note that the τβ scale spans approximately
two decades for both sets of GRBs and that the two groups are fairly
well clustered in the τβ–T90 plane. A closer examination of the two
groups, however, indicates that a correlation between τβ and T90, if
present, is marginal at best. This is certainly true for the short-GRB
group, especially given the large uncertainties in the T90s for these
bursts. The situation for the long-burst group on the other hand is
not immediately clear. In order to explore this further, we cast the
τβ and the T90 time-scales into the source frame by applying the
appropriate (1 + z) factor to the GRBs for which the z is known.
Unfortunately, the z is not available for the majority of the short
GRBs, but we note that the correction is the same for both axes and
is, to first order, small for the short GRBs since the mean z for this
group is <0.8. The corrected results for long GRBs are shown as
a log–log plot in Fig. 6. We see from this figure (and Fig. 5) the
appearance of a very intriguing feature: a plateau region in which
the τβ is essentially independent of T90 and a scaling region in
which τβ appears to increase with T90, with the transition occurring
around T90 of the order of a few seconds.

If one assumes a positive correlation between luminosity and
variability as suggested by a number of authors, then one might
expect smaller τβ values for higher luminosity bursts compared to
those of lower luminosity. To investigate this, the data (in Fig. 6)
are replotted in Fig. 7, in which the size of each datum symbol has
been modulated by the gamma-ray luminosity of the burst, i.e. a
large symbol implies a high luminosity and a small symbol a low
luminosity. We see from Fig. 7 that no obvious connection between
τβ and luminosity is evident.

Under the assumption that τβ is a measure proportional to the
smallest causally connected structure associated with a GRB light

Table 3. Long and short GRBs (T90 and τβ in observer frame). Luminosities are taken from references given in footnotes.

GRB z T90 (s) δT90 (s) τβ (s) δτ−
β (s) δτ+

β (s) Liso (ergs s−1) δL−
iso (ergs s−1) log δL+

iso (ergs s−1)

080804972 2.204 24.704 1.460 0.4306 0.1336 0.1937 a3.58 × 1052 5.82 × 1051 7.85 × 1051

080810549 3.350 107.457 15.413 0.1353 0.0648 0.1243 b9.59 × 1052 1.28 × 1052 1.28 × 1052

080916009 4.350 62.977 0.810 0.2266 0.0630 0.0872 c1.04 × 1054 8.79 × 1052 8.79 × 1052

081222204 2.770 18.880 2.318 0.1956 0.0533 0.0732 a1.26 × 1053 7 × 1051 6 × 1051

090102122 1.547 26.624 0.810 0.0347 0.0111 0.0164 c8.71 × 1052 5.6 × 1051 5.6 × 1051

090323002 3.570 135.170 1.448 0.1598 0.0436 0.0599 a6.87 × 1053 6.55 × 1053 4.45 × 1052

090328401 0.736 61.697 1.810 0.0682 0.0139 0.0175 d1.79 × 1052 1.42 × 1051 1.11 × 1051

090424592 0.544 14.144 0.264 0.0249 0.0031 0.0036 e1.62 × 1052 4 × 1050 5 × 1050

090510016 0.903 0.960 0.138 0.0049 0.0009 0.0011 c1.78 × 1053 1.2 × 1051 1.2 × 1051

090516353 4.100 123.074 2.896 0.7992 0.5686 1.9711 f8.17 × 1052 2.85 × 1052 6.1 × 1051

090618353 0.540 112.386 1.086 0.2631 0.0536 0.0673 e8.47 × 1051 1.17 × 1051 3.4 × 1050

090902462 1.822 19.328 0.286 0.0223 0.0026 0.0029 c5.89 × 1053 9.71 × 1051 9.71 × 1051

090926181 2.106 13.760 0.286 0.0435 0.0061 0.0070 c7.40 × 1053 1.45 × 1052 1.45 × 1052

091003191 0.897 20.224 0.362 0.0300 0.0051 0.0062 a4.53 × 1052 3.71 × 1051 6.55 × 1051

091127976 0.490 8.701 0.571 0.0395 0.0059 0.0069 g3.70 × 1051 1.38 × 1050 1.06 × 1050

091208410 1.063 12.480 5.018 0.0621 0.0180 0.0254 a1.45 × 1052 1.48 × 1051 3.45 × 1051

100117879 0.920 0.256 0.834 0.0331 0.0122 0.0192 a2.63 × 1052 5.01 × 1051 1.08 × 1052

100414097 1.368 26.497 2.073 0.0418 0.0074 0.0090 h1.00 × 1053 1.58 × 1052 7.6 × 1051

aNava et al. (2011).
bGCN 8100.
cGhirlanda et al. (2012).
dGCN 9057.
eUkwatta et al. (2010).
fGCN 9415.
gGCN 10204.
hGCN 10595.

 at N
A

SA
 G

oddard Space Flight C
tr on Septem

ber 2, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


864 G. A. MacLachlan et al.

Figure 8. The ratio of duration-to-minimum variability time-scale (T90/τβ )
versus T90.

curve, it is then possible to interpret the scaling trend in terms
of the internal shock model in which the basic units of emission
are assumed to be pulses that are produced via the collision of
relativistic shells emitted by the central engine. Indeed, we note that
Quilligan et al. (2002) in their study of the brightest BATSE bursts
with T90 >2 s explicitly identified and fitted distinct pulses and
demonstrated a strong positive correlation between the number of
pulses and the duration of the burst. More recent studies (Hakkila &
Cumbee 2008; Bhat & Guiriec 2011; Hakkila & Preece 2011; Bhat
et al. 2012) provide further evidence for the pulse paradigm view of
the prompt emission in GRBs. In our work, we have not relied on
identifying distinct pulses but instead have used the multiresolution
capacity of the wavelet technique to resolve the smallest temporal
scale present in the prompt emission. If the smallest temporal scale
is made from pulse emissions from the smallest structures, then we
can get a measure of the number of pulses in a given burst through
the ratio T90/τβ . In the simple model in which a pulse is produced
every time two shells collide, then the ratio T90/τβ should show a
correlation with the duration of the burst. A plot of this ratio versus
T90 is shown for a sample of short and long bursts in Fig. 8. The
correlation is apparent.

It is now widely accepted that the progenitors for the two classes
of GRBs are quite distinct i.e. the merger of compact objects in the
case of short GRBs and the collapse of rapidly rotating massive
stars in the case of long GRBs. Formation of an accretion disc in
the two cases is posed in a number of models, but important factors
such as the size of the disc, the mass of the disc, the strength of
the magnetic field, in addition to the magnitude of the accretion
rate during the prompt phase, remain largely uncertain. With con-
tributions from intrinsic variability of the central engine or nearby
shock-wave interactions within a jet, we should not be surprised
to observe a systematic difference in the extracted variability time-
scales for long and short bursts, since the progenitors have different
spatial scales. Knowing the variability time-scales, we can estimate
the size of an assumed emission region. From Fig. 5, we note that
the smallest temporal-variability scale for the short bursts is approx-
imately 3 ms and that for the long bursts is approximately 30 ms.
These times translate to emission scales of approximately 108 and
109 cm, respectively. Our variability times and size scales are gen-
erally consistent with the findings of Walker et al. (2000) although
these authors also reported observing time-scales as small as a few
microseconds. We find no evidence for variability times as low as a
few microseconds.

Morsony et al. (2010) modelled the behaviour of a jet propagating
through the progenitor and the surrounding circumstellar material
and showed that the resulting light curves exhibited both short-term
and long-term variability. They attribute the long-term variability,
at the scale of a few seconds, to the interaction of the jet with the
progenitor. They attribute the short-term scale, at the level of mil-
liseconds, to the variation in the activity of the central engine itself.
Alternatively, Zhang & Yan (2011) consider a model in which the
prompt emission is the result of a magnetically powered outflow
which is self-interacting and triggers rapid turbulent reconnections
to power the observed GRBs. This model also predicts two vari-
ability components but interestingly and in contrast to the findings
of Morsony et al. (2010), it is the slow component that is associated
with the activity of the central engine, and the fast component is
linked to relativistic magnetic turbulence. While we are not in a
position to distinguish between these two models, it is intriguing
nonetheless to note (see Fig. 5) that indeed there do appear to be
two distinct time domains for the τβ : a plateau region dominated
primarily by short bursts although it includes some long bursts too,
and a scaling region (i.e. a hint of a correlation between τβ and
T90) that is comprised solely of long bursts. In addition, we observe
that the time-scale in the plateau region is the order of milliseconds
whereas that for the scaling region is approaching seconds.

There is considerable dispersion in the extracted τβ . The varia-
tion is evident for both short- and long-duration GRBs. The main
cause of this dispersion is not fully understood, but one factor that
may play a significant role is angular momentum. As Lindner et al.
(2010) note, the basic features of the prompt emission can be under-
stood in terms of accretion that results via a simple ballistic infall
of material from a rapidly rotating progenitor. Material with low
angular momentum will radially accrete across the event horizon,
whereas the material with sufficient angular momentum will tend to
circularize outside the innermost stable circular orbit and form an
accretion disc. Simulations that go beyond the simple radial infall
model (Lindner et al. 2010, 2012) suggest that the formation of the
disc leads to an accretion shock that traverses outwards through
the infalling material. If one assumes that the initiation of such an
accretion shock and the subsequent emission of the prompt gamma-
rays are associated with a particular time-scale, the variability of
this scale then (as given by the dispersion in τβ for example) may
reflect the different dynamics (initial angular momentum and the
mass of the black hole) of each GRB in our sample. In the case
of long GRBs, the mass of the central black hole can vary by an
order of magnitude, thus potentially explaining a large part of the
dispersion seen in the τβ . However, a similar dispersion for short
bursts is difficult to reconcile using the same arguments since the
mass range for the central black hole in standard merger mod-
els (at least for NS–NS mergers) is expected to be significantly
smaller.

6 C O N C L U S I O N S

We have studied the temporal properties of a sample of prompt-
emission light curves for short- and long-duration GRBs detected
by the Fermi/GBM mission. By using a technique based on wavelets,
we have extracted the variability time-scales for these bursts. Our
main results are summarized as follows.

(a) Both short- and long-duration bursts indicate a temporal vari-
ability at the level of a few milliseconds. Variability of this order
appears to be a common feature of GRBs. This finding is consis-
tent with the work of Walker et al. (2000). However, unlike these
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authors we do not find evidence of variability at a time-scale of few
microseconds.

(b) In general, the short-duration bursts have a variability time-
scale that is significantly shorter than long-duration bursts. In ad-
dition, the τβ values seem not to depend in any obvious way on
the luminosity of the bursts. The dispersion over different GRBs
in the extracted time-scale for short-duration bursts is an order of
magnitude within the smallest variability time, that time being ap-
proximately 3 ms. The dispersion for the long-duration bursts is
somewhat larger. The origin of the dispersion in either case is not
known, although we should expect that the size of the initial angular
momentum and the mass of the system play significant roles. We
note in passing that the 3 ms time-scale may not be a physical lower
limit and may be a result of signal to noise and the set of GRBs
used in this analysis. We remind the reader that our light curve res-
olution was 200 µs, and if a strong enough signal within a range of
time-scales between 0.5 and 3 ms were present, we would expect
our technique to be sensitive to it.

(c) The ratio T90/τβ appears to be positively correlated with the
minimum variability time-scale. This suggests further support for
the pulse paradigm view of the prompt emission as being the result
of shell collisions. In this respect, the minimum variability time-
scale is likely related to key pulse parameters such as rise times
and/or widths.

(d) For short-duration bursts, the variability parameter τβ shows
negligible dependence on the duration of the bursts (characterized
by T90). In contrast, the long-duration bursts indicate evidence for
two variability time-scales: a plateau region (at the shortest time-
scale) which is essentially independent of burst duration and a scal-
ing region (at the higher time-scale) that shows a positive correlation
with burst duration. The transition between the two regions occurs
around T90 of the order of a few seconds in the source frame.
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